

Task weighting:

Mathematics Specialist Unit 3

TEST 3

Student name:	SOL Utions	Teacher name:	
Time allowed for th	is task: 45 min	utes, in class, under test conditions	
	Calcula	ator-Assumed	
Materials required:			
Standard items:	correct	lue/black preferred), pencils (including coloured), sharpener ion fluid/tape, eraser, ruler, highlighters, SCSA Formula Shee id Calculator and Scientific Calculator.	
Special items:		g instruments, templates	
Marks available:	44 mar	ks	

8%

The points A and B have position vectors $3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} + 3\mathbf{k} - 2\mathbf{k}$ respectively.

Determine a vector equation for the straight line passing through A and B (2 marks) (a)

$$AB = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k} - (3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$$

$$= -2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$$

$$\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + \lambda(-2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$$

(b) Write your answer to (a) in its parametric equivalent and hence, or otherwise, express the Cartesian equation of the line in the form $\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$. (3 marks)

$$x = 3 - 2\lambda$$

$$y = -2 + 5\lambda$$

$$z = 2 - 4\lambda$$

$$\lambda = \frac{x - 3}{-2} = \frac{y + 2}{-5} = \frac{z - 2}{4}$$

Determine a unit vector parallel to the straight line in (a). (c)

(2 marks)

nit vector parallel to the straight line in (a).

$$|\overrightarrow{AB}| = \sqrt{(-2)^2 + 5^2 + (-4)^2} = \sqrt{45} = 3\sqrt{5}$$

$$\hat{\mathbf{r}} = \frac{1}{3\sqrt{5}}(-2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$$

$$= \frac{\sqrt{5}}{15}(-2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$$
If or not rationalising the denominator

A plane Π contains the two lines $\mathbf{r} = \mathbf{j} - \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{j} + 3\mathbf{j} - \mathbf{k})$ and

$$r = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mu(-\mathbf{i} + \mathbf{j} + 3\mathbf{k})$$

(a) Write down a vector equation of the plane Π .

(1 mark)

$$\mathbf{r} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) + \mu (-\mathbf{i} + \mathbf{j} + 3\mathbf{k})$$

(b) The point $8\mathbf{j} + 2\mathbf{j} + c\mathbf{k}$ lies in the plane Π . Determine the value of the constant c. (3 marks)

Equating i and j coefficients:
$$1+2\lambda-\mu=8$$

$$-1+3\lambda+\mu=2$$

$$\lambda=2,\ \mu=-3$$

$$c=2+2(-1)-3(3)=-9$$

(c) The vector $a\mathbf{j} + b\mathbf{j} + \mathbf{k}$ is perpendicular to the plane Π . Determine the values of the constants \mathbf{a} and \mathbf{b} . (3 marks)

$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = 0 \implies 2a + 3b - 1 = 0$$

$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = 0 \implies -a + b + 3 = 0$$

$$a = 2, b = -1$$

(d) State the equation of the plane Π in the form $\mathbf{r} \cdot \mathbf{n} = k$.

(2 marks)

$$r_{\bullet}(2i - j + k) = (i - j + 2k) \bullet (2i - j + k)$$

- (a)
- (i) Find the Cartesian equation of a sphere with centre (1, -2, 3) and radius 5. (2marks)

$$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}$$

$$\therefore (x-1)^{2} + (y+2)^{2} + (z-3)^{2} = 5^{2} / .$$

(ii) Hence write the vector equation of this sphere. (1mark)

(b) Find the radius and centre of a sphere with the equation: (2marks)

$$x^{2} + y^{2} + z^{2} - 6x + 8y + 4z + 4 = 0$$

$$x^{2} + y^{2} + z^{2} - 6x + 8y + 4z = -4$$

$$\left(x^{2} - 6x + 9\right) + \left(y^{2} + 8y + 16\right) + \left(z^{2} + 4z + 4\right) = -4 + 9 + 16 + 4$$

$$\left(x - 3\right)^{2} + \left(y + 4\right)^{2} + \left(z + 2\right)^{2} = 5^{2}$$

- $\therefore \text{ The centre is } \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix} \text{ and the radius is } 5$

Question 4 (9 marks)

A particle P, begins from a point $10\mathbf{j}$ m and continues with constant velocity $2\mathbf{j} - \mathbf{j}$ ms⁻¹. One second later another particle, starts at the point $2\mathbf{j} + 15\mathbf{j}$ m and moves with constant velocity $2\mathbf{j} - 5\mathbf{j}$ ms⁻¹.

(a) Show that the particles collide.

(5 marks)

Let *t* seconds be the time after *P* starts.

Integrating
$$r_P = 2\mathbf{i} - \mathbf{j}$$

$$r_P = 2t\mathbf{i} - t\mathbf{j} + c_1$$
when $t = 0$ $10\mathbf{j} = 2 \times 0\mathbf{i} - 0\mathbf{j} + c_1$

$$c_1 = 10\mathbf{j}$$

$$\mathbf{r}_{\mathsf{P}} = 2t \, \mathbf{j} - t \mathbf{j} + 10\mathbf{j}$$

$$\tau_{\rho} = 2t \mathbf{j} + (10-t) \mathbf{j} \sqrt{.}$$

$$y_0 = 2j - 5j$$

For collision to occur $r_P = r_Q$

$$2ti+(10-t)i = 2ti+(20-5t)i$$

Equating Components

$$2ti = 2ti$$
 and $(10 - t)j = (20 - 5t)j$ the i component is ok
 $10 - t = 20 - 5t$

t=2.5 The particles collide 2.5 sec after P starts "moving

(2 marks)

Looking a the Components of r_P x = 2t and y = 10 - t (Eliminating t gives)

$$y = 10 - \frac{x}{2} \qquad \checkmark.$$

Looking at the Components of r_Q x = 2t and y = 20 - 2t (Eliminating t gives)

$$y=20-\frac{5x}{2}$$

(c) Find the Cartesian coordinates for the point of collision

(2 marks)

Solving simultaneously we get

$$10 - \frac{x}{2} = 20 - \frac{5x}{2}$$

$$x = 5$$

Substituting

$$x = 5$$

$$5 \times (5) + 2y = 40$$

$$\therefore y = 7.5$$

The particles collide at the point (5, 7.5)

In the diagram below, E, F, G and H are midpoints of the sides of the quadrilateral OBCD.

Let $\overrightarrow{OB} = 2b$ $\overrightarrow{OC} = 2c$ and $\overrightarrow{OD} = 2d$.

(a) Show that $\overrightarrow{OF} = b + c$.

(2 marks)

$$\overrightarrow{OF} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{BC}$$

$$= \overrightarrow{OB} + \frac{1}{2}(\overrightarrow{OC} - \overrightarrow{OB})$$

$$= 2\mathbf{b} + \frac{1}{2}(2\mathbf{c} - 2\mathbf{b})$$

$$= \mathbf{b} + \mathbf{c}$$

(b) Determine \overrightarrow{OG} in terms of b, c, and d

(2 marks)

$$OG = \overrightarrow{OD} + \frac{1}{2}\overrightarrow{DC}$$

$$= \overrightarrow{OD} + \frac{1}{2}(\overrightarrow{OC} - \overrightarrow{OD})$$

$$= 2\mathbf{d} + \frac{1}{2}(2\mathbf{c} - 2\mathbf{d})$$

$$= \mathbf{d} + \mathbf{c}$$

(c) Prove that *EFGH* is a parallelogram.

(3 marks)

$$EF = OF - OE$$

$$= \mathbf{b} + \mathbf{c} - \mathbf{b}$$

$$= \mathbf{c}$$

$$HG = OG - OH$$

$$= \mathbf{d} + \mathbf{c} - \mathbf{d}$$

$$= \mathbf{c}$$

$$Hence EF \text{ is parallel to } HG \text{ and of equal length}$$
and so $EFGH$ must be a parallelogram.

Use the vector product (cross product) to find the area of the triangle with vertices A(-1,3,2), B(3,5,1) and C(1,6,-2)

Vector Cross Product (Classpad):

$$\overrightarrow{BC} \times \overrightarrow{AC} = 5i - 14j - \bigcirc$$

Finding the Norm. (Classpad)

$$|\overrightarrow{BC} \times \overrightarrow{AC}| = \sqrt{285}$$

$$\therefore \text{ Area} = \frac{1}{2} \sqrt{285} \quad \sqrt{.}$$

$$\approx 8.44 \text{ sq units} \quad \sqrt{.}$$